Quantum Mechanics

Introduction to Quantum Mechanics

Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to a revolution in physics, a shift in the original scientific paradigm: the development of quantum mechanics.

Many aspects of quantum mechanics are counterintuitive and can seem paradoxical because they describe behavior quite different from that seen at larger scales. In the words of quantum physicist Richard Feynman, quantum mechanics deals with "nature as She is—absurd". Features of quantum mechanics often defy simple explanations in everyday language. One example of this is the uncertainty principle: precise measurements of position cannot be combined with precise measurements of velocity. Another example is entanglement: a measurement made on one particle (such as an electron that is measured to have spin 'up') will correlate with a measurement on a second particle (an electron will be found to have spin 'down') if the two particles have a shared history. This will apply even if it is impossible for the result of the first measurement to have been transmitted to the second particle before the second measurement takes place.

Quantum mechanics helps us understand chemistry, because it explains how atoms interact with each other and form molecules. Many remarkable phenomena can be explained using quantum mechanics, like superfluidity. For example, if liquid helium cooled to a temperature near absolute zero is placed in a container, it spontaneously flows up and over the rim of its container; this is an effect which cannot be explained by classical physics.

History

James C. Maxwell's unification of the equations governing electricity, magnetism, and light in the late 19th century led to experiments on the interaction of light and matter. Some of these experiments had aspects which could not be explained until quantum mechanics emerged in the early part of the 20th century.

Evidence of quanta from the photoelectric effect

The seeds of the quantum revolution appear in the discovery by J.J. Thomson in 1897 that cathode rays were not continuous but "corpuscles" (electrons). Electrons had been named just six years earlier as part of the emerging theory of atoms. In 1900, Max Planck, unconvinced by the atomic theory, discovered that he needed discrete entities like atoms or electrons to explain black-body radiation.

Black-body radiation intensity vs color and temperature. The rainbow bar represents visible light; 5000 K objects are "white hot" by mixing differing colors of visible light. To the right is the invisible infrared. Classical theory (black curve for 5000 K) fails to predict the colors; the other curves are correctly predicted by quantum theories.

Very hot – red hot or white hot – objects look similar when heated to the same temperature. This look results from a common curve of light intensity at different frequencies (colors), which is called black-body radiation. White hot objects have intensity across many colors in the visible range. The lowest frequencies above visible colors are infrared light, which also give off heat. Continuous wave theories of light and matter cannot explain the black-body radiation curve. Planck spread the heat energy among individual "oscillators" of an undefined character but with discrete energy capacity; this model explained black-body radiation.

At the time, electrons, atoms, and discrete oscillators were all exotic ideas to explain exotic phenomena. But in 1905 Albert Einstein proposed that light was also corpuscular, consisting of "energy quanta", in contradiction to the established science of light as a continuous wave, stretching back a hundred years to Thomas Young's work on diffraction.

Einstein's revolutionary proposal started by reanalyzing Planck's black-body theory, arriving at the same conclusions by using the new "energy quanta". Einstein then showed how energy quanta connected to Thomson's electron. In 1902, Philipp Lenard directed light from an arc lamp onto freshly cleaned metal plates housed in an evacuated glass tube. He measured the electric current coming off the metal plate, at higher and lower intensities of light and for different metals. Lenard showed that amount of current – the number of electrons – depended on the intensity of the light, but that the velocity of these electrons did not depend on intensity. This is the photoelectric effect. The continuous wave theories of the time predicted that more light intensity would accelerate the same amount of current to higher velocity, contrary to this experiment. Einstein's energy quanta explained the volume increase: one electron is ejected for each quantum: more quanta mean more electrons.

Einstein then predicted that the electron velocity would increase in direct proportion to the light frequency above a fixed value that depended upon the metal. Here the idea is that energy in energy-quanta depends upon the light frequency; the energy transferred to the electron comes in proportion to the light frequency. The type of metal gives a barrier, the fixed value, that the electrons must climb over to exit their atoms, to be emitted from the metal surface and be measured.

Ten years elapsed before Millikan's definitive experiment verified Einstein's prediction. During that time many scientists rejected the revolutionary idea of quanta. But Planck's and Einstein's concept was in the air and soon began to affect other physics and quantum theories.



Comments

Popular posts from this blog

द्वारकानाथ संझगिरी - गुजरा हुआ जमाना आता नहीं दुबारा